CASADOMO

Todo sobre Edificios Inteligentes

SÍGUENOS:
  • Inicio
  • Edificios Inteligentes
  • Domótica
  • Seguridad
  • Multimedia
  • Telecom
  • >Servicios
    • Biblioteca
    • Vídeoteca
    • Comunicaciones
    • >Congresos
      • 5 Congreso Edificios Inteligentes
      • 4 Congreso Edificios Inteligentes
      • 3 Congreso Edificios Inteligentes
      • 2 Congreso Edificios Inteligentes
      • 1 Congreso Edificios Inteligentes
  • Guía Empresas
Inicio » Seguridad » La Universidad de Drexel diseña un sistema guiado por IA para la inspección robótica de edificios

La Universidad de Drexel diseña un sistema guiado por IA para la inspección robótica de edificios

Publicado: 13/02/2024

Un grupo de investigadores de la Universidad de Drexel, en Filadelfia (EE.UU.), están proporcionando a los asistentes robóticos un nuevo de enfoque de aprendizaje automático, con el objetivo de mejorar las inspecciones de edificios para buscar posibles signos de falla debido a un desgaste normal de la edificación.

Asistente robótico para monitorizar grietas edificios.
El sistema de múltiples escalas utiliza una visión por computadora y programas de aprendizaje automático que identifica grietas, escanea, modela y monitoriza robóticamente.

Gracias al nuevo enfoque de aprendizaje automático, los investigadores han creado un sistema que podría permitir la identificación e inspección eficiente de áreas problemáticas por parte de robots autónomos. El sistema multiescala combina una visión por computadora con un algoritmo de aprendizaje profundo para identificar áreas problemáticas de agrietamiento antes de dirigir una serie de escaneos láser de las regiones, para crear un gemelo digital que se utilizaría para evaluar y monitorizar los daños.

Según los investigadores, la detección y medición temprana y precisa de grietas es esencial para los esfuerzos de diagnóstico, mantenimiento y reparación oportunos, evitando un mayor deterioro y mitigando peligros potenciales en las estructuras.

Red neuronal convolucional

En lugar de una medición física interpretada subjetivamente por los ojos humanos, el sistema utiliza una cámara estéreo de alta resolución que alimenta la estructura en un programa de aprendizaje profundo llamado red neuronal convolucional. Estos programas, que se utilizan para el reconocimiento facial, están ganando atención por su capacidad para detectar los patrones y discrepancias más sutiles en volúmenes masivos de datos.

La red neuronal ha sido entrenada con un conjunto de datos de muestras de grietas y puede identificar patrones similares a grietas en las imágenes que el sistema robótico recopila de la superficie de una estructura en concreto. A las regiones que contienen tales patrones se las denomina regiones de interés.

Una vez que se identifica la región de interés, el programa dirige un brazo robótico para que la escanee con un escáner de línea láser, que crea una imagen tridimensional del área dañada. Al mismo tiempo, una cámara LiDAR escanea la estructura que rodea la grieta. Al unir ambos gráficos se crea un modelo digital del área que muestra el ancho y las dimensiones de la grieta y permite rastrear los cambios entre inspecciones.

Pruebas de los robots autónomos con inteligencia artificial

El equipo probó el sistema en el laboratorio sobre una losa con una variedad de grietas y deterioro. En una prueba para ver su capacidad para detectar y medir pequeñas grietas, el sistema fue lo suficientemente sensible como para identificar y dimensionar con precisión las fisuras más pequeñas (menos de una centésima de milímetro de ancho), superando a las cámaras, escáneres y dispositivos de sensores de fibra óptica por un margen respetable.

Si bien los inspectores humanos seguirían tomando la decisión final sobre cuándo y cómo reparar los daños, los asistentes robóticos podrían reducir en gran medida su carga de trabajo, según los investigadores. Además, un proceso de inspección automatizado reduciría los descuidos y los errores de juicio subjetivos que pueden ocurrir cuando inspectores humanos con exceso de trabajo dan el primer vistazo.

Publicado en: Seguridad Etiquetado como: Automatización y Control, Edificio de Oficinas, Gemelo Digital, Inteligencia Artificial, IoT, Robótica

Instagram
Newsletter
BUSCADOR
Patrocinio Oro
  • Zennio
Patrocinio Plata
  • DoorBird
  • Airzone
Patrocinio Bronce
  • inBiot
  • Sensonet Ingeniería
  • Dinuy
  • Delta Dore
  • Jung Electro Ibérica
  • ADITEL
  • Gira
  • ROBOTBAS
  • Tedee
  • Electrónica OLFER
  • Eltako
  • Schneider Electric
  • Intesis
  • Simon
  • Hikvision
  • 2N
  • OPENETICS
  • Helvar
  • CHERUBINI
  • Fermax
  • iLOQ
  • Zumtobel
Sobre CASADOMO

CASADOMO es el principal medio de comunicación on-line sobre Edificios Inteligentes.

Publica diariamente noticias, artículos, entrevistas, TV, etc. y ofrece la información más relevante y actualizada sobre el sector.

AUDITADO POR OJD
COPYRIGHT

©1999-2025 El material de CASADOMO es propiedad intelectual de Grupo Tecma Red S.L. y está protegido por ley. No está permitido utilizarlo de ninguna manera sin hacer referencia a la fuente y sin permiso por escrito de Grupo Tecma Red S.L.

SOBRE GRUPO TECMA RED

CASADOMO pertenece a Grupo Tecma Red, el grupo editorial español líder en las temáticas de Sostenibilidad, Energía y Nuevas Tecnologías en la Edificación y la Ciudad.

Portales de Grupo Tecma Red:

  • CASADOMO - Todo sobre Edificios Inteligentes
  • CONSTRUIBLE - Todo sobre Construcción Sostenible
  • ESEFICIENCIA - Todo sobre Eficiencia Energética
  • ESMARTCITY - Todo sobre Ciudades Inteligentes
  • SMARTGRIDSINFO - Todo sobre Redes Eléctricas Inteligentes

 Logo Grupo Tecma Red Quiénes somos    Publicidad    Notas de Prensa    Condiciones de uso    Privacidad    Cookies    Contactar